
1

Making a Clickable Map Display

This is a presentation about Making a Clickable Map Display of CAP
Alerts. It describes freeware that presents a Web page in HTML with
embedded Javascript.
That clickable map and the information presented can be customized as
much you like, including to display alerts from any CAP news feed.

2

Making a Clickable Map Display

The code for the Web page can be fetched easily with a Web browser,
from the Filtered Alert Hub site at http://alert-hub.org.
Once you have the page, try clicking on different points in the map so
you will see the generated pop-ups.
Later in this Seminar, we will look at how the map is displayed and user
interaction is enabled. For right now, it is enough to know that the only
user interaction enabled on the map is the "onClick" event.
Now, to view the HTML and Javascript code, hit "CTRL-u" .
You will likely want to save a copy of this page as your own file that you
can customize, as I will explain.

.

http://alert-hub.org.

3

Making a Clickable Map Display

Now that you have the code, here are the subtopics based on that code
that we will explore.
But, before getting down to the code, I need to be sure we are all familiar
with a couple of utilities that are in very common use in Javascript
programming.
These are JQuery and JSON.

4

Making a Clickable Map Display

jQuery is a JavaScript library intended to simplify some of the most
common tasks in Javascript programming. You can see where the library
is included in our code. There is also a retro-fit library to provide JQuery
on Internet Explore browsers prior to version 9.
We are focusing here on the part of JQuery called Ajax. AJAX stands
for "Asynchronous JavaScript and XML". Asynchronous processing is
critically important to the Filtered Alert Hub, because speed is crucial
for near-real-time event processing.
Ajax provides a fairly simple programming interface for fetching files.
But, the particular attraction in our case is that our file fetching requires
"cross-domain requests" and JQuery is highly recommended for that.
Here we see our code using the ajax function to fetch a file. Note that
the "aynschronous" function is the "callback" part of the $.ajax function.
Nowdays, a "callback function" would be implemented with a "promise
function" so that the code is much easier to understand and maintain.
That asynchronous function does not have its own name in this case, but
we do see the name of the data structure that the function returns: a data
structure named "json".

. .

5

Making a Clickable Map Display

JSON is a text notation for data interchange. Its syntax borrows from
JavaScript, which make it relatively easy for Javascript programmers
to learn and use.
Data in JSON is packaged as name/value pairs, where the colon
character separates name from value, and name/value pairs are
separated by the comma character.
Objects in JSON are indicated by a matched pair of curly braces { }
and arrays are indicated by a matched pair of square brackets []
As you will see, the Filtered Alert Hub technology uses both JSON
and XML. Although JSON is simpler and less verbose than XML,
JSON does not have a sophisticated object model with schema
validation. That lack greatly complicates the necessary validation
of alert data received from external sources.
Since alert data can be life-critical, the lack of validation alone means
that JSON will never be a complete substitute for XML in the context
of alerting.
So, we use XML where needed, such as parsing or creating CAP alerts
and internet news feeds. We use the simpler JSON structures where it is
adequate and validation is not of interest.
Here I provide a link to a handy tool for dealing with JSON.

.

6

Making a Clickable Map Display

Within the code itself, we will start by looking at the controller function.
This function is initiated by the HTML body onload event. The controller
function uses a chain of "promise" operations. As I mentioned, a promise
function is essentially a simplified way to handle asynchronous callbacks.
The main functions in the Javascript code for the Filtered Alert Hub alerts
display are intended to first compile all alerts and then show each of those
alerts. On completion of the promise chain, the map display will be ready
for user interaction.
I will explain briefly about dependencies in the code other than JQuery
and JSON. Those dependencies are: Open Street Map, Leaflet, and
Leaflet-PIP (Point in Polygon).
I will also highlight some of the Javascript routines that handle polygons
and circles.
So, now let's look at some of the Javascript code.

7

Making a Clickable Map Display

Notice that the controller() function sets up four "Promise" functions.
The first three Promise functions are named:

getSubscriptionParms
compileAlerts
initMap

The first three functions are executed by a "promise chain". Because
there is a .then connecting the promise functions, each of the functions
must complete before the next function executes.
The last promise is actually an array of promise functions, one for each
CAP alert being displayed. Here too, all of the promise functions in the
array must complete before moving on.
In the code, you will see there is a .catch function. This function handles
any error set by any one of the promise functions. The setting of an error
in a promise is accomplished with "reject(error)".

.

8

Making a Clickable Map Display

Now we are exploring the first promise function, which is named
"getSubscriptionParms".
We can see that the promise starts with use of JQuery AJAX
to execute an HTTPS GET of the JSON file named
https://alert-hub-subscriptions.s3.amazonaws.com/json
That file is the master list of all Filtered Alert Hub subscriptions.
As of today, there are more than 2400 subscriptions.
Once the file is retrieved by JQuery, control passes to 'success'
if the retrieval request had no errors from the server, and there
were no JSON errors in the data.

The file contents is then searched to find the JSON item matching the
value in the subscriptionId variable. That identifies the subscription
feed to be displayed.

NOTE: To make this clicable map code use a different subscription feed,
or any other CAP news feed in RSS format, just change the subscription
file name parameter.

Now, having found the JSON item that matches the subscription
sought, the code extracts subscriptionName, feedItemsLimit, and
polygonCoordinates. The polygonCoordinates are then used to set
values for the map center latitude, center longitude, and map zoom.

.

https://alert-hub-subscriptions.s3.amazonaws.com/json

9

Making a Clickable Map Display

Now we turn to functions in the Javascript code for the Filtered Alert Hub
that actually deal with alerts.
First we'll look at compileAlerts() and then we'll look at how the code
shows each of the alerts.

10

Making a Clickable Map Display

We can see that the Javascript "compileAlerts" function uses JQuery
AJAX to execute an HTTPS GET of the JSON file named in the
subscriptionUrl variable.
Here, we are displaying all alerts from the Filtered Alert Hub. Therefore,
the subscriptionId we want is "unfiltered". The full subscriptionURL is:
https://s3-eu-west-1.amazonaws.com/alert-feeds/unfiltered/rss.xml

.

https://s3-eu-west-1.amazonaws.com/alert-feeds/

11

Making a Clickable Map Display

Here we see more of the actual Javascript code.

Once compileAlerts retrieves the subscription feed file, it reads each CAP
alert and pushes to a table the values of title, link, and pubDate from that
alert. For processing we need just the link, but we bring also the title and
pubDate for use in an error message in case the fetch from that link fails.

CAP alerts are compiled from the subscription feed only up to the value
of the feedItemsLimit specified for that subscription feed.

When the compilation is done, an array of promises will be used
to process each item in the table of CAP alerts and to map it.

You might be wondering: Why do this in two steps: Why walk through
the items in the feed to make a table, and then walk through the table?

We do this because a news feed always shows the most recent
items first but when we display alerts on a map we must have the
most recent alerts last. That is necessary since the area specified
in a subsequent alert often overlaps the area of one or more prior
alerts. Any user of the map expects to see the most recent alerts
on the top layer rather than the bottom layer.

Because we need to walk the alerts table backwards, we apply a

Javascript array "reverse" function to the alerts table.

11

Making a Clickable Map Display

12

Making a Clickable Map Display

Here we see a skeleton view of the code for the showThisAlert function.
In showThisAlert, the value of the link variable is a URL, and the code
uses that URL to fetch the CAP alert file asynchronously. On success
of that "GET", the contents of that file is passed in a variable called
"alertXML".
The function "nsPrefix" then makes the CAP namespace prefix regular.
Here it is useful that you already know the structure of a CAP XML file.
Some elements are in the root part of the XML, but we also need
sub-elements of the "info" element. Because "info" can occur multiple
times, we use the "each" method to process each info element in turn.
This pattern holds for the "area" element as well, because it can occur
multiple times within a given info element.
Then within a given area element, there can be multiple polygon elements
and multiple circle elements.
So, the result of this nested set of functions is that we get each of the
polygons and circles in the CAP alert.
In the actual coder but not visible in this skeleton, the code also extracts
certain other values we will need when the alert is displayed on a map.

13

Making a Clickable Map Display

We have seen how the alert files are retrieved and parsed. Now
let's look at how alerts are displayed on an interactive map.
This is where we make use of OpenStreetMap and Leaflet.

14

Making a Clickable Map Display

OpenStreetMap is a digital map of the world. It is free to use under
an open license. Although the Filtered Alert Hub uses OpenStreetMap
for its mapping base layers; we could have used other sources instead,
such as Google Maps or ESRI tools.
The promise function initMap is where our alerts display map is initialized.
For that, we use Leaflet, an open-source JavaScript library for interactive
maps.
The function onEachFeature sets an alert area to yellow or red. This
is done using "setStyle" based on the feature property named "priority".
Priority is set to either "lower" (yellow) or "highest" (red) based on the
values of three CAP alert elements: urgency, severity, and certainty.
The function handleClick is called when a click event occurs on the map.
Its purpose is to generate the popup which will show the map user which
alert areas overlap the clicked point. That is accomplished using Leaflet
PIP (Point in Polygon), another open source Javascript library.

.

15

Making a Clickable Map Display

When the user clicks on a feature on the map, a popup is shown that
lists all alerts at the clicked point.

The popup content is part of the geojson feature code, shown here.

.

16

Making a Clickable Map Display

As our last subtopic, I have a few things to say about handling polygons
and circles.

17

Making a Clickable Map Display

I mentioned earlier that the CAP alert can have multiple area elements
within any given info element. For each CAP area element, we extract
each polygon and each circle.
For each polygon, we must convert the capPolygon to a map feature
named "geojsonPolygon". That is accomplished with the function
named constructPolygon. Once that is done, the map feature is
added at the line coded with: "alerts.addData(geojsonPolygon)"
For each circle, we must convert the CapCircle to a map feature named
"geojsonPolygonCircle". That is accomplished with the function named
constructCircle. Once that is done, the map feature is added at the line
coded with: "alerts.addData(geojsonPolygonCircle);"
There are a couple peculiarities in handling a CAP alert circle. One
is that some CAP sources provide a circle with zero as the radius.
But, a circle with radius zero is actually a point and has no extent.
For the purpose of mapping, we go ahead and coerce the radius
to one, so we have instead a circle with a radius of one kilometer.
Also, the Leaflet Point in Polygon facility does not handles circles.
So we need to convert the circle to a many-sided geoJSON polygon.
The function polygonFromCircle performs that conversion. It makes
a polygon with 20 sides, which seems an adequate approximation.

.

18

Making a Clickable Map Display

I provide a pointer to the Leaflet Quick Start Guide. This is
a very good way to gain an understanding of Leaflet.
For exercises, I suggest that you first change the subscriptionId
to select a different feed. Next, try changing the format and
content of the Legend on the map.
You could also play with changing what information is displayed
when the user clicks on a map feature.

