
Architecture of a Global Scale Alert
Hub

2018 CAP Implementation Workshop - Wed 31st Oct
Ian Ibbotson / e:ian.ibbotson@k-int.com / t:@ianibbo

mailto:ian.ibbotson@k-int.com

Recent History (How we got started)

● Initially asked to participate and contribute specifically to work on real-time
geo-spatial search of alerts and subscriptions.

● History of combining Text and Spatial Search
● Experience with Elasticsearch in a number of contexts
● Experience of microservice and serverless architectures
● Can we provide a subscription matching microservice, which given an alert

shape (Polygon or Circle) can return any of the defined subscriptions whos
shapes (Polygon or Circle) overlap with the alert.

○ https://s3-eu-west-1.amazonaws.com/alert-hub-subscriptions/json

Elasticsearch - v1

● ES has a really great profile for cluster deployment, scale out and replication.
Our target document set (Subscriptions) is not particularly dynamic, and query
rates for the app are easily managed by a single node.

● We load the subscriptions
○ https://s3-eu-west-1.amazonaws.com/alert-hub-subscriptions/json

● Into ES and then search for them using the alert shapes
● Normally, ES is searched using URL parameters

○ http://localhost:9200/alertssubscriptions/_search?q=sheffield

https://s3-eu-west-1.amazonaws.com/alert-hub-subscriptions/json

Elasticsearch - v1
curl -X GET 'http://localhost:9200/alertssubscriptions/_search' -d '{
 "from":0,
 "size":1000,
 "query":{
 "bool": {
 "must": {
 "match_all": {}
 },
 "filter": {
 "geo_shape": {
 "subshape": {
 "shape": {
 "type":"circle",
 "coordinates":[-70.06,12.58],
 "radius": "20.8km"
 },
 "relation":"intersects"
 }
 }
 }
 }
 }
}'

Elasticsearch - v1

● …. And all was well with the world
○ This the spatial search completes in 1ms against the full set of subscriptions

V1 Architecture then (As I recall it)

Feed Polling
(Python/
(Lambda)

Event
Handling
(Lambda/JS)

Sub
Matching
(ES)

History Publish S3

V1 Retrospective - Overview

● Feed Polling was difficult to get right
● Feed Polling is “Bursty”
● Need to feed-back to feed providers / Error Checking / Reporting / Debugging

are critically important - and not terribly easy to debug from cloudwatch logs.
● Event Handling worked OK - sometimes long delays, not clear why
● Again, debugging not so easy
● Polyglot environment is really cute!
● Sub matching seems to work OK
● Publishing seems to block - Debugging proved difficult

V1 - Retrospective - #1 Lesson

● If you aren’t in complete control of your sources, the ability to report on, log
and debug your serverless handlers is really crucial.

● This is still a slightly high friction process for a small development team.
● Need diagnostic tools.

V2 - evolution

We’ve evolved three projects

○ FeedFacade - https://github.com/SemwebServices/PubSubHubBubFacade
○ CAP Collator - https://github.com/SemwebServices/CAPCollator
○ Devops - https://github.com/SemwebServices/SWCapAlertHubDevops

https://github.com/SemwebServices/PubSubHubBubFacade
https://github.com/SemwebServices/CAPCollator
https://github.com/SemwebServices/SWCapAlertHubDevops

FeedFacade

● Uses PostgreSQL to coordinate feed fetcher threads
● Capable of running on multiple nodes
● Substantial new structure to describe and track feeds and alerts

○ Each feed can have individual polling intervals

● A lightweight abstraction over RSS and ATOM that converts pull based feeds
into a reactive event stream.

● Messaging substrate agnostic, but implemented with RabbitMQ
● Does nothing apart from listen for new “Item” entries in source feeds and emits

an event containing that item.
● Supports HTTP HEAD, is the place we implement any special efficiency or

behavior to deal with non-standard servers.

FeedFacade

CAPCollator

● Listens out for new events from feedFacade and reacts to them
○ Run many collators, each will remove items from the queue

● If a CAP link is found in an Item emits a CAP event
○ Event picked up by any listening collator

● Listens for CAP events
○ Fetches the source feed, parses and validates
○ Matches subscriptions
○ Emits an event for each matched subscription, Submits an Alert Indexing Record

● Listens for Subscription Match events
○ Updates a static RSS feed and publish to AWS S3 bucket

● Net effect - A loosely coupled service that converts CAP events to an index of
alerts tagged by subscription, a static RSS file updated and published on S3.

CAPCollator

Devops Project

● Devops project gives us a docker container architecture with all components
○ docker-compose -f ./docker-compose-dev-setup.yml up
○ Gives us a system and
○ http://localhost:9200/alertssubscriptions/_search?q=*
○ Gives us alters indexed

http://localhost:9200/alertssubscriptions/_search?q=*

Cap Collator

V2 Architecture

Message Queue / Message Log Substrate

FeedFacade
instance

PG

FeedFacade
instanceFeedFacade

instance

Emit ATOM
Event (TOPIC)

Cap Collator

Handle
ATOM

FeedFacade
instance

Handle
Cap

Handle
Match S3

ES

Recent Issues / Current Problems

● Replace static feed writer with a delayed write queue
● Date/Time formats
● Occasional Lag Spikes

Future Developments..

● Try Kafka
● Alert Publishing App to Drive Integration tests and Mock Feeds
● Feed Owner Alerting - Broken Feeds, 404s, invalid polygons, etc.

